翻訳と辞書
Words near each other
・ List of Oricon number-one albums of 1999
・ List of Oricon number-one albums of 2000
・ List of Oricon number-one albums of 2001
・ List of Oricon number-one albums of 2002
・ List of Oricon number-one albums of 2003
・ List of Oricon number-one albums of 2004
・ List of Oricon number-one albums of 2005
・ List of Oricon number-one albums of 2006
・ List of Oricon number-one albums of 2007
・ List of Oricon number-one albums of 2008
・ List of Oricon number-one albums of 2009
・ List of Oricon number-one albums of 2010
・ List of Oricon number-one albums of 2011
・ List of Oricon number-one albums of 2012
・ List of Oricon number-one albums of 2013
List of operators
・ List of operators of double decker buses
・ List of Operclipygus species
・ List of operetta composers
・ List of operettas and operas by Millöcker
・ List of operettas by Johann Strauss II
・ List of operettas by Offenbach
・ List of operettas by Ziehrer
・ List of Opeth band members
・ List of ophiolites
・ List of Opiliones of Trinidad and Tobago
・ List of Opinion episodes
・ List of opioids
・ List of OPJHL standings (1972–81)
・ List of Opperhoofden of Delagoa Bay


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

List of operators : ウィキペディア英語版
List of operators
In mathematics, an operator or transform is a function from one space of functions to another. Operators occur commonly in engineering, physics and mathematics. Many are integral operators and differential operators.
In the following ''L'' is an operator
:L:\mathcal\to\mathcal
which takes a function y\in\mathcal to another function L()\in\mathcal. Here, \mathcal and \mathcal are some unspecified function spaces, such as Hardy space, ''L''p space, Sobolev space, or, more vaguely, the space of holomorphic functions.
|| || ||Even component
|-
| L()=\frac|| || ||Odd component
|-
| L()=y\circ (t+1) - y\circ t = \Delta y|| || ||Difference operator
|-
| L()=y\circ (t) - y\circ (t-1) = \nabla y|| || ||Backward difference (Nabla operator)
|-
| L()=\sum y=\Delta^y|| || ||Indefinite sum operator (inverse operator of difference)
|-
| L() =-(py')'+qy \,|| || ||Sturm–Liouville operator
|-
! style="background:#eafaea" colspan=4|Non-linear transformations
|-
| F()=y^ \ || || ||Inverse function
|-
| F()=t\,y'^ - y\circ y'^ || || ||Legendre transformation
|-
| F()=f\circ y|| || ||Left composition
|-
| F()=\prod y|| || ||Indefinite product
|-
| F()=\frac|| || ||Logarithmic derivative
|-
| F()=}|| || ||Elasticity
|-
| F()=-\left(\right)^2|| || || Schwarzian derivative
|-
| F()=\int_a^t |y'| \,dt || || ||Total variation
|-
| F()=\frac\int_a^t y\,dt || || ||Arithmetic mean
|-
| F()=\exp \left( \frac\int_a^t \ln y\,dt \right) || || ||Geometric mean
|-
| F()= -\frac|| Cartesian||y=y(x)
x=t||rowspan=3|Subtangent
|-
| F()= -\frac|| Parametric
Cartesian||x=x(t)
y=y(t)
|-
| F()= -\frac||Polar||r=r(\phi)
\phi=t
|-
| F()=\frac\int_a^t r^2 dt||Polar||r=r(\phi)
\phi=t ||Sector area
|-
| F()= \int_a^t \sqrt \, dt|| Cartesian||y=y(x)
x=t||rowspan=3|Arc length
|-
| F()= \int_a^t \sqrt \, dt|| Parametric
Cartesian||x=x(t)
y=y(t)
|-
| F()= \int_a^t \sqrt \, dt||Polar||r=r(\phi)
\phi=t
|-
| F() = \int_a^t\sqrt()\, dt || Cartesian||y=y(x)
x=t||rowspan=3|Affine arc length
|-
| F() = \int_a^t\sqrt()\, dt || Parametric
Cartesian||x=x(t)
y=y(t)
|-
| F()=\int_a^t\sqrt()||Parametric
Cartesian||x=x(t)
y=y(t)
z=z(t)
|-
| F()=\frac}\frac\frac\left(Torsion of curves
|-
| X()=\frac
Y()=\frac||Parametric
Cartesian||x=x(t)
y=y(t)||Dual curve
(tangent coordinates)
|-
| X()=x+\frac
Y()=y+x'\frac||Parametric
Cartesian||x=x(t)
y=y(t)||rowspan=2|Evolute
|-
| F()=t (r'\circ r^)||Intrinsic||r=r(s)
s=t
|-
|X()=x-\frac\, dt}
Y()=\frac|| Parametric
Cartesian||x=x(t)
y=y(t)|||Pedal curve with pedal point (0;0)
|-
|X()=\frac
Y()=\frac|| Parametric
Cartesian||x=x(t)
y=y(t)|||Negative pedal curve with pedal point (0;0)
|-
| X() = \int_a^t \cos \left(\frac \,dt\right ) dt
Y() = \int_a^t \sin \left(\frac \,dt\right ) dt||Intrinsic||y=r(s)
s=t||Intrinsic to
Cartesian
transformation
|-
! style="background:#eafaea" colspan=4|Metric functionals
|-
| F()=||y||=\sqrt|| || ||Norm
|-
| F()=\int_E xy \, dt|| || ||Inner product
|-
| F()=\arccos \left(Fubini–Study metric
(inner angle)
|-
! style="background:#eafaea" colspan=4|Distribution functionals
|-
| F() = x
* y = \int_E x(s) y(t - s)\, ds|| || ||Convolution
|-
| F() = \int_E y \ln y \, dy|| || ||Differential entropy
|-
| F() = \int_E yt\,dt|| || ||Expected value
|-
| F() = \int_E (t-\int_E yt\,dt)^2y\,dt|| || ||Variance
|}
==See also==

* List of transforms
* List of Fourier-related transforms
* Transfer operator
* Fredholm operator
* Borel transform
* Table of mathematical symbols

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「List of operators」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.